您的位置 首页 知识

关于周长的小知识(关于周长的知识)

1.关于周长的知识 周长:环绕有限面积的区域边缘的长度积分,叫做周长,图形一周的长度,就是图形的周长。周长的长度因此亦相等于图形所有边的和。 一些常用公式 : 圆:c=πd=2πr…


1.关于周长的知识

周长:环绕有限面积的区域边缘的长度积分,叫做周长,图形一周的长度,就是图形的周长。周长的长度因此亦相等于图形所有边的和。

一些常用公式 :

圆:c=πd=2πr (d为直径,r为半径)

长方形:c=2(a+b) (a为长,b为宽)

正方形:c=4a (a为边长)

长方形的周长 = (长 + 宽)* 2

正方形的周长 = 任何一条边 * 4

三角形的周长 = 三条边的和

圆形的周长 = 直径 * 圆周率(π)

扇形的周长:C=2R+nπR÷180 (n=圆心角)

2.周长的知识

围成圆的曲线的长叫做周长。我们可以把圆放在直尺上滚一周,直接量出圆的周长。

通过实验可以知道,任何圆的周长总是直径的3倍多一些,我们把圆的周长和直径的比值叫做圆周率,用字母π表示。数学家们逐渐发现π是无限不循环的小数,现在人们已经能用计算机算出它的小数点后面的上亿位了。π=3.141592653… 但在实际应用中不需要这么多位小数,我们在计算时,一般只取它的近似值。π≈3.14 因为圆的周长总是直径的π倍,当我们知道了圆的直径或半径时,就可以计算出它的周长。如果用C表示周长,那么C=πd或C=2πr 约在1500年前,中国有一位伟大的数学家和天文学家祖冲之,他计算出圆周率应在3.1415926和3.1415927之间,成为世界上第一个把圆周率的值的计算精确到6位小数的人,他的这项伟大成就比外国人要早一千多年。

3.谁有关于圆的周长与面积的小知识,资料等等

【圆的平面几何性质和定理】 一有关圆的基本性质与定理 ⑴圆的确定:不在同一直线上的三个点确定一个圆。

圆的对称性质:圆是轴对称图形,其对称轴是任意一条通过圆心的直线。圆也是中心对称图形,其对称中心是圆心。

垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。

⑵有关圆周角和圆心角的性质和定理 在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。 一条弧所对的圆周角等于它所对的圆心角的一半。

直径所对的圆周角是直角。90度的圆周角所对的弦是直径。

⑶有关外接圆和内切圆的性质和定理 ①一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等; ②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。

③S三角=1/2*△三角形周长*内切圆半径 ④两相切圆的连心线过切点(连心线:两个圆心相连的线段) 〖有关切线的性质和定理〗 圆的切线垂直于过切点的半径;经过半径的一端,并且垂直于这条半径的直线,是这个圆的切线。 切线判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线。

切线的性质:(1)经过切点垂直于这条半径的直线是圆的切线。(2)经过切点垂直于切线的直线必经过圆心。

(3)圆的切线垂直于经过切点的半径。 切线长定理:从圆外一点到圆的两条切线的长相等,那点与圆心的连线平分切线的夹角。

〖有关圆的计算公式〗 1.圆的周长C=2πr=πd 2.圆的面积S=πr^2; 3.扇形弧长l=nπr/180 4.扇形面积S=nπr^2;/360=rl/2 5.圆锥侧面积S=πrl [编辑本段]【圆的解析几何性质和定理】 〖圆的解析几何方程〗 圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^2。 圆的一般方程:把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是x^2+y^2+Dx+Ey+F=0。

和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2。 圆的离心率e=0,在圆上任意一点的曲率半径都是r。

〖圆与直线的位置关系判断〗 平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是: 1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0。利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下: 如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。

如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。 如果b^2-4acx2时,直线与圆相离; 当x1 (x+D/2)^2+(y+E/2)^2=D^2/4+E^2/4-F => 圆心坐标为(-D/2,-E/2) 其实不用这样算 太麻烦了 只要保证X方Y方前系数都是1 就可以直接判断出圆心坐标为(-D/2,-E/2) 这可以作为一个结论运用的 且r=根号(圆心坐标的平方和-F)。

4.关于圆的周长的知识

1.求算圆周率的值是数学中一个非常重要也是非常困难的研究课题。

中国古代许多数学家都致力于圆周率的计算,而公元5世纪祖冲之所取得的成就可以说是圆周率计算的一个跃进。祖冲之经过刻苦钻研,继承和发展了前辈科学家的优秀成果。

他对于圆周率的研究,就是他对于我国乃至世界的一个突出贡献。祖冲之对圆周率数值的精确推算值,用他的名字被命名为“祖冲之圆周率”,简称“祖率”。

圆周率就是圆的周长与它直径之间的比,是一个常数,用希腊字母“π”来表示,为算式355÷113所得。在天文历法方面和生产实践当中,凡是牵涉到圆的一切问题,都要使用圆周率来推算。

如何正确地推求圆周率的数值,是世界数学史上的一个重要课题。我国古代数学家们对这个问题十分重视,研究也很早。

在《周髀算经》和《九章算术》中就提出径一周三的古率,定圆周率为三,即圆周长是直径长的三倍。此后,经过历代数学家的相继探索,推算出的圆周率数值日益精确。

西汉末年刘歆在为王莽设计制作圆形铜斛(一种量器)的过程中,发现直径为一、圆周为三的古率过于粗略,经过进一步的推算,求得圆周率的数值为3.1547。东汉著名科学家张衡推算出的圆周率值为3.162。

三国时,数学家王蕃推算出的圆周率数值为3.155。魏晋之际的著名数学家刘徽在为《九章算术》作注时创立了新的推算圆周率的方法——割圆术。

他设圆的半径为1,把圆周六等分,作圆的内接正六边形,用勾股定理求出这个内接正六边形的周长;然后依次作内接十二边形,二十四边形……,至圆内接一百九十二边形时,得出它的边长和为6.282048,而圆内接正多边形的边数越多,它的边长就越接近圆的实际周长,所以此时圆周率的值为边长除以2,其近似值为3.14;并且说明这个数值比圆周率实际数值要小一些。在割圆术中,刘徽已经认识到了现代数学中的极限概念。

他所创立的割圆术,是探求圆周率数值的过程中的重大突破。后人为纪念刘徽的这一功绩,把他求得的圆周率数值称为“徽率”或称“徽术”。

刘徽以后,探求圆周率有成就的学者,先后有南朝时代的何承天,皮延宗等人。何承天求得的圆周率数值为3.1428;皮延宗求出圆周率值为22/7≈3.14。

以上的科学家都为圆周率的研究推算做出了很大贡献,可是和祖冲之的圆周率比较起来,就逊色多了。祖冲之认为自秦汉以至魏晋的数百年中研究圆周率成绩最大的学者是刘徽,但并未达到精确的程度,于是他进一步精益钻研,去探求更精确的数值。

它研究和计算的结果,证明圆周率应该在3.1415926和3.1415927之间。他成为世界上第一个把圆周率的准确数值计算到小数点以后七位数字的人。

直到一千年后,这个记录才被阿拉伯数学家阿尔·卡西和法国数学家维叶特所打破。祖冲之提出的“密率”,也是直到一千年以后,才由德国 称之为“安托尼兹率”,还有别有用心的人说祖冲之圆周率是在明朝末年西方数学传入中国后伪造的。

这是有意的捏造。记载祖冲之对圆周率研究情况的古籍是成书于唐代的史书《隋书》,而现传的《隋书》有元朝大德丙午年(公元1306年)的刊本,其中就有和其他现传版本一样的关于祖冲之圆周率的记载,事在明朝末年前三百余年。

而且还有不少明朝之前的数学家在自己的著作中引用过祖冲之的圆周率,这些事实都证明了祖冲之在圆周率研究方面卓越的成就。祖冲之按照刘徽的割圆术之法,设了一个直径为一丈的圆,在圆内切割计算。

当他切割到圆的内接一百九十二边形时,得到了“徽率”的数值。但他没有满足,继续切割,作了三百八十四边形、七百六十八边形……一直切割到二万四千五百七十六边形,依次求出每个内接正多边形的边长。

最后求得直径为一丈的圆,它的圆周长度在三丈一尺四寸一分五厘九毫二秒七忽到三丈一尺四寸一分五厘九毫二秒六忽之间,上面的那些长度单位我们现在已不再通用,但换句话说:如果圆的直径为1,那么圆周小于3.1415927、大大不到千万分之一,它们的提出,大大方便了计算和实际应用。要作出这样精密的计算,是一项极为细致而艰巨的脑力劳动。

我们知道,在祖冲之那个时代,算盘还未出现,人们普遍使用的计算工具叫算筹,它是一根根几寸长的方形或扁形的小棍子,有竹、木、铁、玉等各种材料制成。通过对算筹的不同摆法,来表示各种数目,叫做筹算法。

如果计算数字的位数越多,所需要摆放的面积就越大。用算筹来计算不象用笔,笔算可以留在纸上,而筹算每计算完一次就得重新摆动以进行新的计算;只能用笔记下计算结果,而无法得到较为直观的图形与算式。

因此只要一有差错,比如算筹被碰偏了或者计算中出现了错误,就只能从头开始。要求得祖冲之圆周率的数值,就需要对九位有效数字的小数进行加、减、乘、除和开方运算等十多个步骤的计算,而每个步骤都要反复进行十几次,开方运算有50次,最后计算出的数字达到小数点后十六、七位。

今天,即使用算盘和纸笔来完成这些计算,也不是一件轻而易举的事。让我们想一想,在一千五百多年前的南朝时代,一位中年人在昏暗的油灯下,手中不停地算呀、记呀,还要经常地重新摆放数以万计的算筹。

5.求下面多边图形的周长

(8+6)*2=28************************************************************************************^__^真心祝你学习进步,如果你对这个答案有什么疑问,请追问,另外如果你觉得我的回答对你有所帮助,请千万别忘记采纳哟!如果有其他问题,欢迎向我求助。

与本题无关的就请不要追问了。答题不易呀。

懂了记得选满意。************************************************************************************。

关于周长的小知识(关于周长的知识)

本文来自网络,不代表环球资讯网立场,转载请注明出处:https://www.hqzxnews.com/zhishi/104900.html

为您推荐

返回顶部